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Abstract
An impressive success of spintronic applications has been typically realized
in metal-based structures which utilize magnetoresistive effects for substantial
improvements in the performance of computer hard drives and magnetic random
access memories. Correspondingly, the theoretical understanding of spin-
polarized transport is usually limited to a metallic regime in a linear response,
which, while providing a good description for data storage and magnetic
memory devices, is not sufficient for signal processing and digital logic. In
contrast, much less is known about possible applications of semiconductor-
based spintronics and spin-polarized transport in related structures which
could utilize strong intrinsic nonlinearities in current–voltage characteristics
to implement spin-based logic. Here we discuss the challenges for realizing
a particular class of structures in semiconductor spintronics: our proposal
for bipolar spintronic devices in which carriers of both polarities (electrons
and holes) contribute to spin-charge coupling. We formulate the theoretical
framework for bipolar spin-polarized transport, and describe several novel
effects in two- and three-terminal structures which arise from the interplay
between nonequilibrium spin and equilibrium magnetization.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

In contrast to well established applications based on metallic magnetic multilayers [1–14],
much less is known about the prospect for utilizing semiconductors in spintronic applications.
Typically, these commercial metal-based applications rely on magnetoresistive effects and
employ two-terminal structures known as the spin-valves in which a nonmagnetic material is
sandwiched between two ferromagnetic electrodes. The flow of carriers through a spin-valve
is determined by the direction of their spin (up or down) relative to the magnetization of the

0953-8984/07/165219+23$30.00 © 2007 IOP Publishing Ltd Printed in the UK 1

http://dx.doi.org/10.1088/0953-8984/19/16/165219
http://stacks.iop.org/JPhysCM/19/165219


J. Phys.: Condens. Matter 19 (2007) 165219 I Žutić et al
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Figure 1. Datta–Das spin field effect transistor. The source and drain are ferromagnetic, while the
channel is formed at a heterojunction interface. The gate modifies the Bychkov–Rashba field Ω
which is perpendicular to both the growth direction n and electron momenta k [14, 16, 17]. The
electrons either enter the drain if their spin direction is unchanged (top) or bounce off if the spin has
precessed (bottom), giving on and off states, respectively. Adapted from [14].

device’s electrodes, leading thus to magnetoresistance. Since magnetization in ferromagnets
persists even when the power is switched off, these applications have the significant advantage
of being nonvolatile. However, for advanced functions, such as signal processing and digital
logic, two-terminal devices such as these are of limited use. Spin logic will also require
three-terminal devices and could benefit from incorporating semiconductors with their intrinsic
nonlinear current–voltage characteristics, suitable for signal amplification.

An early proposal for a semiconductor-based spin-logic device is the Datta–Das spin field
effect transistor (FET) [15], depicted in figure 1. While, despite the extensive experimental
efforts, there remain important challenges for its realization [14], it is helpful to illustrate
a generic scheme for a spin logic device with basic elements such as spin injection and
detection as well as spin transport and manipulation. The spin FET, which can be viewed as
a gate-controlled (via spin–orbit coupling) spin-valve, has also spurred many related transistor
schemes [14, 18–25]. However, a similar functionality has been recently realized in a very
different implementation using a carbon nanotube (CNT), rather than a semiconductor [26],
as the nonmagnetic material sandwiched between the ferromagnetic source and drain with
tunnelling contacts. While a CNT has a negligible spin–orbit coupling, the tunability of both
the magnitude and the sign of tunnelling magnetoresistance in such a CNT spin-valve was
controlled by gate voltage, which changed on- or off-resonance condition [27, 28]. Another
interesting feature of the Datta–Das spin FET is that it shows the importance of magnetic
heterojunctions as the building block for various semiconductor spin-based devices. In this
article we will review a theory for bipolar spin-polarized transport in magnetic semiconductor
heterojunctions and show possible implications for spin injection and spin-controlled logic. The
term bipolar indicates that carriers of both polarities (electrons and holes) are important4. In
contrast to unipolar devices, such as metallic spintronic devices [3, 30], bipolar devices exhibit
large deviations from local charge neutrality and intrinsic nonlinearities in the current–voltage
characteristics, which are important even at small applied bias.

4 This is a conventional meaning of the term bipolar, as used in the physics of semiconductors. However, the term
bipolar has also been used to describe an analogy between the coexistence of two spin carrier populations (of spin up
and spin down) in spin-polarized transport and two charge carrier populations (electrons and holes) in bipolar charge
transport. See, for example [29].
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p

i–GaAssp
in

 in
je

ct
or

n–
co

nt
ac

t

p–
co

nt
ac

t

i–GaAs

(b)

n–AlGaAs

p–AlGaAs

p–GaAs

(a)

AlGaAsAlGaAs
nspin injector

n – type

p–GaAs

Figure 2. Schematic device geometry of a spin LED: (a) recombination of spin-polarized electrons
injected from spin injector and unpolarized holes injected from the p-doped GaAs, in the intrinsic
GaAs quantum well, producing circularly polarized light; (b) sketch of the corresponding band
edges and band offsets in the device geometry. In the quantum well, spin down electrons and
unpolarized holes are depicted by solid and empty circles, respectively. Adapted from [14].

These characteristics, together with the ease of manipulating the minority charge carriers,
enable the design of active devices that can amplify signals—as well as providing additional
degrees of control not available in charge-based electronics. Analogous to the bipolar charge
transport [31, 32], which is dominated by the influence of the nonequilibrium carrier density,
the nonequilibrium spin density (unequal population of ‘spin up’ and ‘spin down’ carriers)
plays an important role in bipolar spintronics. A spin light emitting diode (LED), depicted
in figure 2, can be viewed as a prototypical bipolar spintronic device. Similar to an ordinary
LED [32], electrons and holes recombine (in a quantum well or a p–n junction) and produce
electroluminescence. However, in a spin LED, as a consequence of radiative recombination
of spin-polarized carriers, the emitted light is circularly polarized and could be used to trace
back the degree of polarization of carrier density upon injection into a semiconductor. While
spin LEDs may not directly lead to spin logic, they have been widely used as detectors for spin
polarization, injected optically or electrically into a semiconductor [33–38].

Another important structure for bipolar spintronics is a semiconductor-based magnetic
heterojunction and its special cases such as p–n junctions. In addition to being elements of spin
FETs and spin LEDs, as we shall show, they are also the building blocks for bipolar devices
which could enable a spin-controlled logic. Early experimental efforts date back to nearly
40 years ago. It was shown that a ferromagnetic p–n junction, based on the ferromagnetic
semiconductor CdCr2Se4 doped with Ag acceptors and In donors, could act as a diode.
Photo-voltaic diodes were also fabricated using an (Hg, Mn)Te magnetic semiconductor [39].
However, more extensive work on magnetic p–n junctions has begun since the discovery of (III,
Mn)V ferromagnetic semiconductors such as (In, Mn)As [40–42], and (Ga, Mn)As [43–45],
reviewed in [46–48]. Heavily doped p-(Ga, Mn)As/n-GaAs junctions were fabricated [49–53],
to demonstrate tunnelling interband spin injection. Furthermore, it was shown that the current
in p-CoMnGe/n-Ge magnetic heterojunction diodes can indeed be controlled by magnetic
field [54].

A potentially valuable property for all-semiconductor device designs is the external control
of Curie temperature (TC). Carrier-mediated ferromagnetism in dilute magnetic semiconductors
such as (In, Mn)As, (Ga, Mn)As, and MnGe [46, 55–58] allows for tuning the strength of the
ferromagnetic interactions and, therefore, TC. For example, when the number of carriers is
changed, either by shining light [59, 60] or by applying a gate bias in a field effect transistor
geometry [61], the material can be switched between the paramagnetic and ferromagnetic
states. These experiments suggest the prospect of nonvolatile multifunctional devices with
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tunable optical, electrical, and magnetic properties. Furthermore, the demonstration of
optically or electrically controlled ferromagnetism provides a method for distinguishing carrier-
induced semiconductor ferromagnetism from ferromagnetism that originates from metallic
magnetic inclusions [62]. We predict a possibility for the reentrant ferromagnetism in such
semiconductors [63]. Thermally excited carriers can enhance exchange coupling with magnetic
impurities and lead to the regime in which with the increase of temperature there is an onset of
ferromagnetism and enhanced magnetization.

An important challenge for potential spin logic applications is the demonstration of
room temperature operations. In all-semiconductor schemes it would be desirable to have
ferromagnetic materials with high TC. Some of the promising developments include (Ga,
Mn)As with TC ∼ 250 K [64] and (Zn, Cr)Te with TC ∼ 300 K [65]. However, there is
a wide range of other materials with much higher predicted and/or reported TC [47, 66, 67]
which need to be critically examined and their potential tested in the actual device structures.

An alternative route to room temperature operation is the use of hybrid structures that
combine metallic ferromagnets with high TC and semiconductors. It is important to note that
in such systems tailoring of interfacial properties can significantly improve magnetoresistive
effects or spin injection efficiency [68–71]. For example, use of MgO (instead of Al2O3) as a
tunnel barrier between CoFe electrodes in a magnetic tunnel junction can lead to a dramatic
increase in room temperature tunnelling magnetoresistance [72, 73], confirming previous
theoretical predictions [74, 75]. Furthermore, it was demonstrated that employing a CoFe/MgO
tunnel injector can provide robust room temperature spin injection in semiconductors such
as GaAs [76, 77] with room temperature spin polarization of injected electrons exceeding
70% [78].

We first formulate drift–diffusion equations for bipolar spin-polarized transport. Next we
consider spin injection and extraction in a magnetic p–n junction as well as an interplay between
equilibrium magnetization and the injected nonequilibrium spin, which leads to a strong spin-
charge coupling. In the last section we review the basics of the bipolar junction transistor and
our proposal for its generalization—the magnetic bipolar transistor.

2. Bipolar spin-polarized transport

2.1. Spin-polarized drift–diffusion equations

Spin-polarized bipolar transport can be thought of as a generalization of its unipolar
counterpart. Specifically, a spin-polarized unipolar transport, in a metallic regime, can then
be obtained as a limiting case by setting the electron–hole recombination rate to zero and
considering only one type of carriers (either electrons or holes). In the absence of any
spin polarization, equations which aim to describe spin-polarized bipolar transport need to
recover a description of charge transport. A conventional charge transport in semiconductors
is often accompanied by large deviations from local charge neutrality (for example, due
to materials inhomogeneities, interfaces, and surfaces) and Poisson’s equation needs to be
explicitly included. If we consider (generally inhomogeneous) doping with density of Na

ionized acceptors and Nd donors we can then write

∇ · (ε∇φ) = q(n − p + Na − Nd), (1)

where n and p (electron and hole densities) also depend on the electrostatic potential φ

and permittivity ε can be spatially dependent. In contrast to the metallic regime, even
equilibrium carrier density can have large spatial variations, which can be routinely tailored
by the appropriate choice of the doping profile [Nd(x)− Na(x)]. Furthermore, charge transport

4



J. Phys.: Condens. Matter 19 (2007) 165219 I Žutić et al

in semiconductors can display strong nonlinearities, for example, exponential-like current–
voltage dependence of a diode [32].

We briefly recall here a case of a unipolar spin-polarized transport in a metallic regime.
The basic theoretical understanding dates back to Mott [79]. He noted that the electrical
current in ferromagnets could be expressed as the sum of two independent and unequal parts
for two different spin projections, implying that the current is spin polarized. We label spin-
resolved quantities by λ = 1 or ↑ for spin up, λ = −1 or ↓ for spin down along the chosen
quantization axis. For a free electron, spin angular momentum and magnetic moment are in
opposite directions, and what precisely is denoted by ‘spin up’ varies in the literature [80].
Conventionally, in metallic systems [81], spin up refers to carriers with majority spin. This
means that the spin (angular momentum) of such carriers is antiparallel to the magnetization.
Some care is needed with the terminology used for semiconductors; the terms majority and
minority there refer to the relative population of charge carriers (electrons or holes). Spin-
resolved charge current (density) in a diffusive regime can be expressed as

jλ = σλ∇μλ, (2)

where σλ is conductivity and the chemical potential (sometimes also referred to as the
electrochemical potential) is

μλ = (q Dλ/σλ)δnλ − φ, (3)

with q the proton charge, Dλ the diffusion coefficient, δnλ = nλ − nλ0 the change of electron
density from the equilibrium value for spin λ, and φ the electric potential. We use a notation
in which a general quantity X is expressed as a sum of equilibrium and nonequilibrium parts,
X = X0 + δX . Here we focus on the case of a collinear magnetization. More generally, for a
noncollinear magnetization, jλ becomes a second-rank tensor [82, 83].

In the steady state the continuity equation is

∇ jλ = q

[
δnλ

τλ−λ

− δn−λ

τ−λλ

]
, (4)

and τλλ′ is the average time for flipping a λ-spin to λ′-spin. For a degenerate conductor the
Einstein relation is

σλ = q2 Nλ Dλ, (5)

where σ = σ↑ + σ↓ and N = N↑ + N↓ is the density of states. Using a detailed balance
N↑/τ↑↓ = N↓/τ↓↑ [84] together with equations (3) and (5), the continuity equation can be
expressed as [85, 86]

∇ jλ = q2 N↑ N↓
N↑ + N↓

μλ − μ−λ

τs
, (6)

where τs = τ↑↓τ↓↑/(τ↑↓ + τ↓↑) is the spin relaxation time. Equation (6) implies the
conservation of charge current j = j↑ + j↓ = const, while the spin counterpart, the difference
of the spin-polarized currents js = j↑ − j↓, is position dependent.

Following the work of Mott, a unipolar spin-polarized transport and spin injection
in the metallic regime is usually described using equivalent resistor schemes with two
resistors of different magnitudes, one for each spin direction, also known as the ‘two-current
model’ [14, 87–89]. This approach implies a linear response with injected spin polarization
and assumes that there are no interfacial spin-flip processes. However, the latter assumption,
widely used since the first demonstration of spin injection in metals [90], may need to be
reconsidered [85] when analysing room temperature spin injection experiments [91, 92].

Returning to the case of spin-polarized transport in semiconductors, we formulate a drift–
diffusion model which will generalize the considerations of equation (2)–(6) to include both

5



J. Phys.: Condens. Matter 19 (2007) 165219 I Žutić et al
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Figure 3. Band-energy schemes for a magnetic heterojunction. In equilibrium chemical potential
μ0 is constant. Conductance and valence-band edges (Ec and Ev) are spin split in the magnetic
p region, while in the nonmagnetic n region there is no spin splitting. Left and right edges of a
space-charge (depletion) region are denoted by xL and xR. For a sharp doping profile, at x = w/2,
there are generally discontinuities in conduction and valence bands (�Ec and �Ev) and in other
quantities, such as effective mass, permittivity, and diffusion coefficient. Adapted from [97].

electrons and holes [93–95]. We recall that from equations (2) and (3) spin-resolved current
has a drift part (proportional to electric field, i.e. ∝∇φ) and a diffusive part (∝∇nλ), which
we want to extend to also capture the effects of band bending, band offsets, various materials
inhomogeneities, and the presence of two types of charge carriers. For nondegenerate doping
levels (Boltzmann statistics) the spin-resolved components are

nλ = Nc

2
e−[Ecλ−μnλ]/kB T , pλ = Nv

2
e−[μpλ−Evλ]/kB T , (7)

where subscripts c and v label quantities which pertain to the conduction and valence bands. For
example, Nc,v = 2(2πm∗

c,vkBT/h2)3/2 are effective densities of states with the corresponding
effective masses m∗

c,v and kB is the Boltzmann constant. From the total electron density
n = n↑ + n↓ and the spin density s = n↑ − n↓, we can define the spin polarization of electron
density as

Pn = s

n
= n↑ − n↓

n↑ + n↓
. (8)

Such a finite spin polarization does not necessarily require ferromagnetic materials or external
magnetic fields at all. For example, circularly polarized light provides an effective way to
generate net spin polarization in direct-bandgap semiconductors. The angular momentum
of the absorbed light is transferred to the medium; this leads directly to orientation of the
electron orbital momenta and, through spin–orbit interaction, to polarization of the electron
spins [96]. In bulk III–V semiconductors, such as GaAs, optical orientation can lead to 50%
polarization of the electrons; this can be further enhanced by using quantum structures of
reduced dimensionality, or by applying strain.

We consider a general case where the spin splitting of conduction and valence bands,
expressed as 2qζc and 2qζv, can be spatially inhomogeneous [94]. Splitting of carrier bands
(Zeeman or exchange) can arise due to doping with magnetic impurities and/or applied
magnetic field. The spin-λ conduction band edge (see figure 3)

Ecλ = Ec0 − qφ − λqζc (9)

differs from the corresponding nonmagnetic bulk value Ec0 due to electrostatic potential φ and
the spin splitting λqζc. The discontinuity of the conduction band edge is denoted by �Ec.
In the nonequilibrium state a chemical potential for λ-electrons is μnλ and generally differs
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from the corresponding quantity for holes. While μnλ has an analogous role to electrochemical
potential in equations (2) and (3), following the conventional semiconductor terminology, we
refer to it here as the chemical potential, which is also known as the quasi-Fermi level. An
analogous notation holds for the valence band and holes. For example, in equation (7) pλ is the
spin-λ density of holes with Evλ = Ev0 − qφ − λqζv.

By assuming the drift–diffusion-dominated transport across a heterojunction, the spin-
resolved charge current densities can be expressed as [97]

jnλ = μ̄nλnλ∇Ecλ + q DnλNc∇(nλ/Nc), (10)

jpλ = μ̄pλ pλ∇Evλ − q Dpλ Nv∇(pλ/Nv), (11)

where μ̄ and D are mobility and diffusion coefficients (we use symbol μ̄ to distinguish it from
chemical potential μ). We note that ‘drift terms’ have quasi-electric fields ∝∇Ec,vλ that are
generally spin dependent (∇ζc,v 	= 0 is referred to as a magnetic drift [94]) and different for
conduction and valence bands. In contrast to homojunctions, additional ‘diffusive terms’ arise
due to the spatial dependence of mc,v, and therefore of Nc,v. In nondegenerate semiconductors
μ̄ and D are related by Einstein’s relation

μ̄n,pλ = q Dn,pλ/kBT, (12)

which differs from the metallic (completely degenerate) case given by equation (5).
With two types of carriers the continuity equations are more complex than those in metallic

systems. After including additional terms for recombination of electrons and holes as well as
photoexcitation of electron–hole pairs, we can write these equations as

−∂nλ

∂ t
+ ∇ · jnλ

q
= +rλ(nλ pλ − nλ0 pλ0) + nλ − n−λ − λs̃n

2τsn
− Gλ, (13)

+∂pλ

∂ t
+ ∇ · jpλ

q
= −rλ(nλ pλ − nλ0 pλ0) − pλ − p−λ − λs̃p

2τsp
+ Gλ. (14)

Generation and recombination of electrons and holes of spin λ can be characterized by
the rate coefficient rλ, the spin relaxation time for electrons and holes is dented by τsn,p

and the photoexcitation rate Gλ represents the effects of electron–hole pair generation and
optical orientation. Spin relaxation equilibrates carrier spin while preserving nonequilibrium
carrier density, and for nondegenerate semiconductors s̃n = n Pn0, where from equation (7) an
equilibrium polarization of electron density is

Pn0 = tanh(qζc/kBT ), (15)

and an analogous expression holds for holes and s̃ p.
The system of drift–diffusion equations (Poisson and continuity equations) can be self-

consistently solved numerically [93, 94, 98] and under simplifying assumptions (similar to the
case of charge transport) analytically [95, 97, 99]. Heterojunctions, such as the one sketched in
figure 3, can be thought of as building blocks of bipolar spintronics. To obtain a self-consistent
solution in such a geometry, only the boundary conditions at x = 0 and w need to be specified.
On the other hand, for an analytical solution we also need to specify the matching conditions
at xL and xR, the two edges of the space charge region (or depletion region), in which there is
a large deviation from the local charge neutrality, accompanied by a band bending and strong
built-in electric field.

We illustrate how the matching conditions for spin and carrier density can be applied
within the small-bias or low-injection approximation, widely used to obtain analytical results
for charge transport [32, 100]. In this case nonequilibrium carrier densities are small compared
to the density of majority carriers in the corresponding semiconductor region. For materials
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such as GaAs a small-bias approximation gives a good agreement with the full self-consistent
solution up to approximately 1 V [94, 98]. To simplify our notation, we consider a model where
only electrons are spin polarized (p↑ = p↓ = p/2), while it is straightforward to also include
spin-polarized holes [95, 97]. Outside the depletion charge region materials parameters (such
as Na, Nd, Nc, Nv, μ̄, and D) are taken to be constant. The voltage drop is confined to the
depletion region, which is highly resistive and depleted from carriers. In thermal equilibrium
(μnλ = μpλ = μ0) the built-in voltage Vbi can be simply evaluated from equation (7) as

Vbi = φ0R − φ0L, (16)

while the applied bias V (taken to be positive for forward bias) can be expressed as

V = −(δφR − δφL), (17)

implying that the total junction potential between x = 0 and w is V − Vbi. For a heterojunction
sketched in figure 3 the width of a depletion (space-charge) region is

xR − xL ∝ √
Vbi − V , (18)

where the built-in voltage is qVbi = −�Ec + kBT ln(n0R NcR/n0L NcL). Outside the depletion
region the system of drift–diffusion equations reduces usually to only diffusion equations for
spin density and the density of minority carriers, while the density of majority carriers is simply
given by the density of donors and acceptors [94, 95]. These diffusion equations contain spin
and charge diffusion lengths

L = √
Dτ , (19)

in which L would provide a characteristic length scale for the spatial decay of nonequilibrium
spin or charge by substituting for D the appropriate (electron or hole) diffusion coefficient
and for τ (spin or charge) the characteristic timescale. However, there are situations, due to
additional effects of spin–orbit coupling or simultaneous spin polarization of electrons and
holes in magnetic semiconductors, in which diffusion equations become more complicated
and equation (19) needs to be generalized [97, 101]. For several decades the techniques
of optical orientation have been used to directly measure the characteristic timescale for the
decay of nonequilibrium electron spin [96], reaching up to 30 ns [102]. More recent optical
measurements have shown at low temperatures even longer spin lifetime in GaAs (>40 ns)
[103] and (>100 ns) [104, 105], which could reach ∼1 ns at room temperature. Spin–
orbit coupling in the valence band typically leads to much faster spin relaxation of holes
than electrons (spin lifetimes are three to four orders of magnitude shorter in GaAs at room
temperature [106]), further supporting our approximation of spin-unpolarized holes. The
related issues of spin relaxation and spin dephasing in GaAs have been extensively reviewed
in [14].

From equation (7) we rewrite electron density by separating various quantities into
equilibrium and nonequilibrium parts as

nλ = nλ0 exp[(qδφ + δμnλ)/kBT ], (20)

and electron carrier and spin density (for simplicity we omit subscript ‘n’ when writing
s = n↑ − n↓) can be expressed as [95]

n = e(δφ+δμ+)/kB T

[
n0 cosh

(
qμ−
kBT

)
+ s0 sinh

(
qμ−
kBT

)]
, (21)

s = e(δφ+δμ+)/kB T

[
n0 sinh

(
qμ−
kBT

)
+ s0 cosh

(
qμ−
kBT

)]
, (22)

8
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where μ± ≡ (μn↑ ± μn↓)/2, and the polarization of electron density is

Pn = tanh(qμ−/kBT ) + Pn0

1 + Pn0 tanh(qμ−/kBT )
. (23)

If we assume that the spin-resolved chemical potentials are constant for xL � x � xR

(which means that the depletion region is sufficiently narrow so that the spin relaxation
and carrier recombination can be neglected there) it follows, from equation (23) and
tanh(qμ−/kBT ) ≡ const, that

PL
n = PL

n0[1 − (PR
n0)

2] + δPR
n (1 − PL

n0 PR
n0)

1 − (PR
n0)

2 + δPR
n (PL

n0 − PR
n0)

, (24)

where L (left) and R (right) label the edges of the space-charge (depletion) region of a p–n
junction. Correspondingly, δPR

n represents the nonequilibrium electron polarization, evaluated
at R, arising from a spin source. For a homogeneous equilibrium magnetization (PL

n0 = PR
n0),

δPL
n = δPR

n ; the nonequilibrium spin polarization is the same across the depletion region.
Equation (24) demonstrates that only nonequilibrium spin, already present in the bulk region,
can be transferred through the depletion region at small biases [93–95].

Our assumption of constant spin-resolved chemical potentials is a generalization of a
conventional models for charge transport in which both μn and μp are assumed to be constant
across the depletion region [100]. From equations (17), (21), and (22) we can obtain minority
carrier and spin densities at x = xL

nL = n0L eqV/kB T

[
1 + δPR

n

PL
n0 − PR

n0

1 − (PR
n0)

2

]
, (25)

sL = s0L eqV/kB T

[
1 + δPR

n

PL
n0

1 − PL
n0 PR

n0

1 − (PR
n0)

2

]
, (26)

which in the absence of nonequilibrium spin (δPR
n = 0) reduce to the well known Shockley

relation for the minority carrier density at the depletion region [31]

nL = n0L eqV/kB T , (27)

and an analogous formula holds for spin

sL = s0L eqV/kB T . (28)

2.2. Magnetic p–n junctions

Even in nonmagnetic p–n junctions the presence of nonequilibrium spin (created electrically
or optically) can have interesting implications. By the term nonmagnetic we imply the limit
of vanishing equilibrium magnetization or, equivalently, vanishing spin polarization since
ζc,v = 0. We have predicted that the nonequilibrium spin polarization is bias dependent.
By analogy with junction capacitance, this effect could be called spin capacitance as the
amount of accumulated spin changes with applied bias. In contrast to the usual monotonic
spatial decay of spin density in the nonmagnetic metal [14], away from the point of spin
injection, in inhomogeneously doped semiconductors (such as p–n junctions) the spatial
profile can be qualitatively different. Spin density can even increase inside the nonmagnetic
region, away from the point of spin injection, which we refer to as (spatial) spin density
amplification [93, 107]. Illumination of a p–n junction by circularly polarized light can lead
to spin electromotive force (EMF) to generate spin-polarized currents even at no applied bias
and to provide an open-circuit voltage. In addition to our proposal for a p–n-junction-based
spin-polarized solar battery [98], there is a range of other structures which could be used as a
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source of spin EMF [108–110] or which could display the effects of spin capacitance [111] and
spatial spin amplification [108, 109, 112].

To take additional advantage of manipulating spin degrees of freedom, which could
lead to strong spin-charge coupling and potential applications [14], it is useful to consider
semiconductor structures with equilibrium magnetization. Such magnetization or, equivalently,
equilibrium spin polarization arising from carrier spin-subband splitting (see figure 3) is
readily realized in applied magnetic field. Effective g-factors can be much larger than for
free electrons, either due to magnetic impurities [113] (|g| ≈ 500 at T < 1 K [114],
in n-doped (In, Mn)As |g| > 100 at 30 K [115]) or due to strong spin–orbit coupling
in narrow-bandgap semiconductors (in InSb |g| ≈ 50 even at room temperature). In
the absence of magnetic field, equilibrium magnetization and spin splitting can be realized
using ferromagnetic semiconductors. Magnetic impurities and/or an application of an
inhomogeneous magnetic field could be used to obtain a desirable, spatially inhomogeneous,
spin splitting. Inhomogeneous spin splitting can also occur in domain walls, discussed, for
example, in [116]. By solving a system of drift–diffusion and Poisson equations, one can show
that an inhomogeneous spin splitting leads to deviations from local charge neutrality [95].

We discuss several properties of magnetic p–n junctions which rely on the interplay of the
carrier spin-subband splitting and the nonequilibrium spin induced, for example, by optical or
electrical means. We also focus here on a diffusive regime while a magnetic diode in a ballistic
regime was recently discussed in [117]. For simplicity, we look at a particular case where the
band offsets (see figure 3) are negligible and the spin polarization of holes can be neglected,
and both in the notation for the carrier spin splitting 2qζ and for the spin density s we can omit
index n. From equations (7) and (9) we can rewrite the product of equilibrium densities as

n0 p0 = n2
i cosh(qζ/kBT ), (29)

where ni is the intrinsic (nonmagnetic) carrier density [100] and we notice that the density
of minority carriers in the p region will depend on the spin splitting n0(ζ ) = n0(ζ =
0) cosh(qζ/kBT ). In figure 4 we illustrate bipolar spin-polarized transport across a magnetic
p–n junction under applied forward bias. Calculations are performed using a self-consistent
solution of a system of drift–diffusion and Poisson equations. The parameters taken for
w = 12 μm long junctions are based on GaAs-like material doped with Na = 3 × 1015 cm−3

acceptors to the left and Nd = 5 × 1015 cm−3 donors to the right. Diffusion coefficients are
DL

n = 10DR
p = 103.6 cm2 s−1, the intrinsic carrier density is ni = 1.8 × 106 cm−3, the

permittivity is ε = 13.1, the recombination rate coefficient is r↑ = r↓ = (2/3)×10−5 cm3 s−1,
and the spin relaxation time is τsn = 0.2 ns. The minority diffusion lengths are [93, 98]
Ln = 1 μm, L p = 0.25 μm, and the electron spin diffusion length in the n (p-)region is
Lsn = 1.4 μm (Lsp = 0.8 μm).

We first ask whether spin can be injected and extracted into/from the nonmagnetic region.
At small bias (V < Vbi ≈ 1.1 V) there is no spin injection or extraction. As the bias increases,
the injection and extraction become large and are further enhanced with τsn . The reason why
there is no spin injection or extraction at small bias is that although there are exponentially
more spin up than spin down electrons (recall the Boltzmann statistics) in the magnetic side,
the barrier for crossing the space-charge region is exponentially larger for spin up than for
spin down electrons (see figure 4). Those two exponential effects cancel out, leaving no net
spin current flowing through the space-charge region. We could examine these arguments with
analytical findings from equation (24), also valid for the low-bias regime. Considering spin
injection in the nonmagnetic n region (PR

n0 = 0) we see that in the absence of nonequilibrium
spin polarization at x = xR, δPR

n = 0, there is indeed no spin injection: PL
n = PL

n0. This is
in contrast to arguments which suggest that an inefficient spin injection arises from resistance
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Figure 4. Spin injection and extraction in magnetic p–n junctions. (a) Band-energy diagram
with spin-polarized electrons (arrows) and unpolarized holes (circles) for spin injection. Spin
polarization profiles for different applied biases (labelled by the numbers in volts) show that the
spin polarization injected in the nonmagnetic region increases with bias and spin relaxation time
τsn . For V � 0.8 V there in only a negligible spin injection in the p region while there is a
sizeable equilibrium spin polarization in the magnetic n region, determined by the spin splitting
of qζ = 0.5kBT . (b) Band-energy diagram for spin extraction. Electrons from the nonmagnetic
n region preferentially populate a lower spin level in the magnetic p region, which leads to spin
extraction. In contrast to spin injection, spin polarization profiles show opposite signs in the
nonmagnetic and magnetic regions. Adapted from [94].

(conductivity) mismatch [118]. Here we note that even with a good conductivity match and
highly polarized spin injector the spin injection can still be completely negligible. Furthermore,
the efficiency of spin injection depends strongly on the applied bias rather than on the relative
conductivities of the two regions.

At large bias self-consistent numerical results become indispensable, showing that spin
injection/extraction is possible as a result of building up a nonequilibrium spin at the space-
charge region. However, some of these trends, including our prediction for spin extraction, can
already be seen analytically in the low bias regime, Using the previous assumption that μn↑,↓
are constant for xL � x � xR and by solving diffusion equations for x < xL and x > xR we
can obtain [95]

δsR = −γ3s0L eqV/kB T , (30)

where

γ3 =
(

DL
n

DR
n

) (
Lsn

Ln

)
tanh[(w − xR)/Lsn]

tanh(xL/Ln)
, (31)

implies that a contribution to the nonequilibrium spin in the n region will have the
opposite sign to that of the equilibrium spin in the p region. Similar spin extraction was
recently observed experimentally in MnAs/GaAs junctions [119], and related theoretical
implications due to tunnelling from nonmagnetic semiconductors into metallic ferromagnets
were considered [120]. Furthermore, it was suggested that a combination of spin injection
and spin extraction could lead to completely spin polarized carriers in semiconductor
nanostructures [121, 122].
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Figure 5. Scheme of a magnetic p–n junction, which could lead to the spin-voltaic effect and
giant magnetoresistance. (a) Band-energy diagram. The spin splitting 2qζ , the nonequilibrium
spin polarization at the depletion region edge δPn(xR), and the region where the spin is injected
are depicted. (b) Circuit geometry corresponding to panel (a). Using circularly polarized light
(photoexcited electron–hole pairs absorb the angular momentum carried by incident photons),
nonequilibrium spin is injected transversely in the nonmagnetic n region and the circuit loop for
I–V characteristics is indicated. Panel (c) indicates an alternative scheme to electrically inject spin
into the n region. Adapted from [99].

We next consider a simple scheme of a magnetic p–n junction, depicted in figure 5, in
which there is an external source of nonequilibrium spin, induced optically or electrically.
As we discuss below, an interplay between the equilibrium spin polarization and the
nonequilibrium spin source leads to the spin-voltaic effect (a spin analogue of the photo-voltaic
effect) and to giant magnetoresistance.

Similar to the theory of charge transport in nonmagnetic junctions [31], the total charge
current can be expressed as the sum of minority carrier currents at the depletion edges
j = jnL + jpR with

jnL ∝ δnL, jpR ∝ δpR, (32)

where δnL is given by equation (25) with PR
n0 = 0, δpR = p0[exp(qV/kBT ) − 1], and V is the

applied bias (positive for forward bias). Equation (29) implies that in the regime of large spin
splitting, qζ > kBT , the density of minority electrons changes exponentially with B (∝ζ ) and
can give rise to exponentially large magnetoresistance [94].

The interplay between the Pn0 (recall equation (15)) in the p region, and the nonequilibrium
spin source of polarization δPn in the n region, at the edge of the depletion region, modifies
the I –V characteristics of the diodes. To illustrate the I –V characteristics of the magnetic
p–n junction, consider the small-bias limit (recall equations (16)–(28)) in the configuration
of figure 5. The electron contribution to the total electric current can be expressed from
equations (25) and (32) as [94, 95]

jnL ∼ n0(ζ )
[
eqV/kB T (1 + δPn Pn0) − 1

]
. (33)

Equation (33) generalizes the Silsbee–Johnson spin-charge coupling [90, 123], originally
proposed for ferromagnet/paramagnet metal interfaces, to the case of magnetic p–n junctions.
The advantage of the spin-charge coupling in p–n junctions, as opposed to metals or
degenerate systems, is the nonlinear voltage dependence of the nonequilibrium carrier and spin
densities [94, 95], allowing for the exponential enhancement of the effect with increasing V .
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Equation (33) can be understood qualitatively from figure 5. In equilibrium, δPn = 0 and
V = 0, no current flows through the depletion region, as the electron currents from both sides
of the junction balance out. The balance is disturbed either by applying bias or by selectively
populating different spin states, making the flow of one spin species greater than that of the
other. In the latter case, the effective barriers for crossing of electrons from the n to the p side
are different for spin up and down electrons (see figure 5). Current can flow even at V = 0
when δPn 	= 0. This is an example of the spin-voltaic effect, in which nonequilibrium spin
causes an EMF [94, 124] and the direction of the zero-bias current is controlled by the relative
sign of Pn0 and δPn . We emphasize here that the spin-voltaic effect results in a build-up of
electrical voltage due to the proximity of the equilibrium and nonequilibrium spin. This effect
is distinct from the so-called spin Hall effect(s), which results in a build-up of a spin imbalance
(different chemical potential for spin up and down), but no electric field, due to transport in a
spin–orbit field [101].

A straightforward method for detecting the spin-voltaic effect follows from the symmetry
properties of the different contributions to the charge current under magnetization reversal. By
reversing the equilibrium spin polarization using a modest external magnetic field (Pn0 →
−Pn0) a part of jnL, odd under such reversal, can be identified as the spin-voltaic current
jsv [94]. Measurements of j (V , Pn0) − j (V ,−Pn0) = 2 jsv(V , Pn0) would then provide (1)
cancellation of contributions to the charge current that are not related to the injected spin and (2)
a choice of V to facilitate a sufficiently large jsv for accurate detection. Unlike the spin LEDs,
this approach does not rely on direct bandgap material and injected spin could be detected
even in silicon [97]. Magnetic semiconductors approximately lattice matched with Si could be
used for spin injection and detection ((Ga, Mn)As has already been grown on Si [125]). For
example, the Mn-doped chalcopyrite ZnGeP2 (mismatch < 2%) [126] has been reported to
be ferromagnetic at room temperature. Another Mn-doped chalcopyrite, ZnSiP2, was recently
predicted [67] to be ferromagnetic, as well as highly spin polarized and closely lattice matched
with Si (mismatch <1%). Mn doping of the chalcopyrite alloy ZnGe1−xSix P2 would likely lead
to an exact lattice match, since the lattice constant of Si is between those of closely matched
ZnSiP2 and ZnGeP2.

Additionally, from jsv(V ) one could also determine a spin relaxation time by all-electrical
means [99]. A particular assumption of a magnetic homojunction is not essential. One could
also generalize this analysis to heterojunctions, which would include (see figure 3) band offsets
and spin splitting in both conduction and valence bands.

Several experimental efforts have recently observed the spin-voltaic effect in
semiconductor heterojunctions. One of the approaches used a p–n (In, Ga)As/(Al, Ga)As
heterojunction [127] in the applied magnetic field. Circularly polarized light was used to inject
nonequilibrium spin in (Al, Ga)As while an applied magnetic field created equilibrium spin
splitting in (In, Ga)As (a particular Al composition in the (Al, Ga)As region can produce
nearly zero g-factor). An interesting implication of this device is that it operates as a spin
photodiode [127]. By converting circular polarization directly into an electrical signal it is a
counterpart of a spin LED, which converts electrical signal into emission of circularly polarized
light. In another approach both the spin injection and the detection were realized electrically.
Iron was used as a spin injector into n-doped GaAs, while the spin splitting in p-doped (Ga,
Mn)As enabled spin detection [128].

We will revisit the implications of spin-voltaic effect in three-terminal structures, discussed
in the section on magnetic bipolar transistors.

In addition to the spin-voltaic effect, the spin-charge coupling in magnetic p–n
junctions can produce a giant-magnetoresistance- (GMR-) like effect, which follows from
equation (33) [94]. The current depends strongly on the relative orientation of the
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Figure 6. Giant-magnetoresistance-like effect in magnetic p–n junctions. Current/spin-splitting
characteristics (I–ζ ) are calculated self-consistently at V = 0.8 V for the geometry from figure 5.
Spin splitting 2qζ on the p side is normalized to kBT . The solid curve, symmetric in ζ , corresponds
to a switched-off spin source. With spin source on (the extreme case of 100% spin polarization
injected into the n region is shown), the current is a strongly asymmetric function of ζ , displaying
large GMR, shown by the dashed curve. Materials parameters of GaAs, used in figure 4, were
applied. Adapted from [94].

nonequilibrium spin and the equilibrium magnetization. Figure 6 plots j , which also includes
the contribution from holes, as a function of 2qζ/kBT for both the unpolarized, δPn = 0, and
fully polarized, δPn = 1, n regions. In the first case j is a symmetric function of ζ , increasing
exponentially with increasing ζ due to the increase in the equilibrium minority carrier density
n0(ζ ). In unipolar systems, where transport is due to the majority carriers, such a modulation
of the current is not likely, as the majority carrier density is fixed by the density of dopants.
A realization of exponential magnetoresistance was recently demonstrated in a very different
materials system of manganite–titanate heterojunctions [129], in which an applied magnetic
field affected the width of a depletion layer.

If δPn 	= 0, the current will depend on the sign of Pn0 · δPn . For parallel nonequilibrium
(in the n region) and equilibrium spins (in the p region), most electrons cross the depletion
region through the lower barrier (see figure 5), increasing the current. In the opposite case of
antiparallel relative orientation, electrons experience a larger barrier and the current is inhibited.
This is demonstrated in figure 6 by the strong asymmetry in j . The corresponding GMR
ratio, the difference between j for parallel and antiparallel orientations, can also be calculated
analytically from equation (33) as 2|δPn Pn0|/(1 − |δPn Pn0|) [95].

3. Spin transistors

Thus far we have mostly considered two-terminal spintronic devices in which we were
concerned with spin injection and spin-voltaic phenomena. However, the greatest strength of
the semiconductor spintronics should lie in the possibility to fabricate three-terminal structures
that would allow current gain. Two goals can be set: first, to extend the functionalities of the
existing transistors by adding spin control, and, second, to improve the performance of the
current technology in terms of speed, power consumption, or sensitivity. Whether or not these
goals will be reached depends much on the progress in fabrication and materials development,
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as well as on our understanding of the physics of spin-charge coupling in semiconductor
heterojunctions.

We will briefly discuss a few proposed and existing spin transistor designs (some of them
are further reviewed in [14]), before we analyse in more detail our proposal for magnetic bipolar
transistors. The canonical example of a spin transistor is that of Datta and Das [15], depicted in
figure 1. The gating does not involve charge build-up, so the transistor could be faster and
less power consuming than conventional field effect transistors. In addition, the magnetic
configurations of the electrodes can be useful for storing information. However, despite
many experimental efforts, the Datta–Das transistor has not been realized. There are inherent
difficulties in its semiconductor-based design, the most important being the spin injection to
the quasi-one-dimensional conduction channel (which, as noted in section 1, could be avoided
by using carbon nanotubes). An interesting alternative to the spin field-effect transistor, a spin
MOSFET, has been a more conventional structure employing ferromagnetic source and drain
and using the spin-valve effect to control the current [24, 25]. Since the proposed structure
includes silicon substrate it could be potentially useful for silicon spintronics. An important
prerequisite for a spin MOSFET would be a demonstration of efficient spin injection in Si [97]
and there are recent efforts to fabricate suitable ferromagnet/Si contacts [130, 131]. Another
effort to incorporate silicon in spintronics devices relies on a spin diffusion transistor with
a silicon base [132]. The emitter and collector contacts are ferromagnetic metal–insulator–
semiconductor junctions and early encouraging results show both magnetoresistive effects and
current gain greater than unity.

There have been other transistor designs using metallic layers in the structure. They go
under the name of hot electron spin transistors or spin-valve transistors [14, 133]. For example,
one realization (which is also called the magnetic tunnelling transistor) uses a combination
of a ferromagnetic tunnel junction and a Schottky barrier collector [134–139]. The tunnel
junction plays the role of the emitter–base junction, supplying hot spin-polarized electrons into
the magnetic base. The base–collector junction is a Schottky barrier. The hot electrons from the
base can overcome the barrier only if their energy is higher than the barrier height. Since the hot
electrons lose their energy depending on the spin, the magnetic junction can effectively control
the collector current: for parallel magnetizations of the junction the current is large, while for
antiparallel it is small, since the spin up, say, hot electrons in a spin down base equilibrate
more efficiently than in a spin up base. This is the physics behind the high magnetocurrent
ratios (reaching thousands of percent) in these transistors. The disadvantage of these hybrid
metal/semiconductor transistors is the absence of gain (the word transistor here points to the
three-terminal geometry rather than to the ability to amplify currents). Nevertheless the hybrid
designs have been successful in achieving the large magnetocurrent ratios and spin injection
into semiconductors. A direct connection of such structures with bipolar transport, discussed
in this paper, was recently realized in the spin-valve structures which contain a nonmagnetic
p–n junction, which can have useful effects as the energy barrier [140, 141].

Motivated by the potential ease of the integration of magnetic semiconductors with
conventional devices, we have proposed what we call magnetic bipolar transistors (MBTs),
in which one or more regions (emitter, base, and collector) are formed by a magnetic or
ferromagnetic semiconductor [142]. We have shown that such structures can exhibit giant
magnetoamplification and a significant control of electrical properties by magnetic field, as well
as spin injection all the way from the emitter to the collector. The magnetic bipolar transistor
was later discussed in terms of spin currents in [143] and in terms of magnetoamplification
in [144]. A bipolar transistor-like scheme has been recently presented in [145]: the
semiconductor spin-diffusive channel is topped with three ferromagnetic electrodes, enabling
the amplification of magnetoresistance.
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Figure 7. (a) Scheme of a conventional bipolar junction transistor. The conduction and valence
band profiles are shown. The emitter and the collector are n type; the base is p type. The electrical
field directions in the two depletion layers are indicated. The base–emitter voltage is Vbe, while the
base–collector voltage is Vbc. In the active forward regime, shown in the scheme, the electrons from
the emitter go through the forward biased base–emitter junction (Vbe > 0) into the base, where
they diffuse towards the collector while also partially recombining with the holes in the base. Those
which reach the collector will be swept by the huge built-in field into the collector, participating in
the collector current. (b) The corresponding magnetic bipolar transistor with the spin splitting 2qζn

of the conduction band in the base (‘p–m’ refers to magnetic p doping). In addition, a source spin
can be injected into the emitter, enabling spin-charge effects such as giant magnetoamplification.
Holes are assumed to be unpolarized.

4. Magnetic bipolar transistors

4.1. Connection to bipolar junction transistors

We next describe the operation principles of the magnetic bipolar transistor and their
conventional (nonmagnetic) counterparts. Consider an npn transistor, as in figure 7(a). The
transistor consists of three regions: emitter, base, and collector. There are two p–n junctions
in series: base–emitter and base–collector. Depending on the polarity of the bias across the
junctions the transistor exhibits different functionalities. The current gain in bipolar junction
transistors appear only in the active forward and active reverse regimes. In both regimes one
junction is forward, the other reverse biased. The only distinction between the two regimes
comes from the asymmetry of the actual device. In the active forward bias the base–emitter
junction is forward biased, while the base–collector junction is reverse biased. In the active
reverse regime the bias polarities as switched. Typically, the emitter is more heavily doped
than the collector, which results in a much greater current gain for the active forward regime
due to the increased electron injection efficiency from the emitter (see below).

There are two more possibilities for the transistor operation. In the saturation mode both
of the junctions are forward biased. The transistor exhibits no gain, but this configuration is
used in logic operations to represent the on state. Similarly, the configuration in which both
junctions are reverse biased, also called cut-off, is used to represent the off state.

We will see that those configurations have a much richer structure in magnetic bipolar
transistors, shown schematically in figure 7(b). In fact, there exists an additional configuration,
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Table 1. Operational modes of bipolar junction transistors (BJTs) and magnetic bipolar transistors
(MBTs). Forward (F) and reverse (R) bias means positive and negative voltage, respectively.
Symbols MA and GMA stand for magnetoamplification and giant magnetoamplification, while
ON and OFF are modes of small and large resistance, respectively; SPSW stands for spin switch.
Adapted from [146].

Mode Vbe Vbc BJT MBT

Forward active F R Amplification MA, GMA
Reverse active R F Amplification MA, GMA
Saturation F F ON ON, GMA, SPSW
Cut-off R R OFF OFF
Spin voltaic 0 0 OFF SPSW

in which both junctions are unbiased but spin-charge coupled (through the spin-voltaic effect),
which can be used as a spin switch. All the possible functionalities are summarized in table 1.

We have seen in section 2.2 on magnetic diodes that the spin-charge coupling (or,
more specifically, the spin-voltaic effect) across magnetic p–n junctions can either intensify
or inhibit carrier injection. The electron current in a magnetic junction was given by
equation (33). This spin-charge coupling induces significant changes in the operation of the
magnetic bipolar transistor in terms of what we have named magnetoamplification and giant
magnetoamplification (GMA) [142, 147–149].

Let us first see what is the mechanism behind the current gain in conventional bipolar
transistors. The amplification factor β is customarily written as [150]

β = 1

α′
T + γ ′ . (34)

Here

α′
T = 1 − αT

αT
, (35)

γ ′ = 1 − γ

γ
, (36)

and αT and γ are the base transport factor and the emitter injection efficiency, respectively.
We can then call α′

T and γ ′ the base transport inefficiency, which is due to the electron–hole
recombination in the base, and emitter injection inefficiency, respectively.

The base transport inefficiency is given by the expression

α′
T = cosh

(
wb

Lnb

)
− 1, (37)

which is valid for both conventional and magnetic transistors. Here wb is the width of the base
and Lnb is the electron diffusion length. Typically, the width of the base, wb, is much smaller
than the electron diffusion length in the base, Lnb, in which case α′

T ≈ (wb/Lnb)
2/2. Typically

Lnb is about a micron, so the base transport factor does not play a significant role in modern
bipolar transistors with a narrow base. Another possibility for how to reduce the base factor is
to employ graded semiconductors with built-in electric fields that help the diffusing electrons
from the emitter to reach the collector faster to inhibit electron–hole recombination.

Unlike the base inefficiency, the emitter inefficiency depends rather strongly on the spin
properties of the magnetic transistor. Let us write

γ ′ = γ ′
0η, (38)
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where γ ′
0 is the emitter inefficiency for conventional spin-unpolarized transistors, while the

spin-charge coupling is contained in the factor η. We can then write, for the practical limit of
α′

T � γ ′, that

β ≈ η/γ ′
0 ≈ ηβ0. (39)

We will be concerned only with η; β0 is the conventional transistor current gain. For us it is
just a numerical factor of the order of a hundred.

4.2. Magnetoamplification

In the absence of an external spin injection, all the spin properties of magnetic bipolar
transistors are determined by the equilibrium magnetization of the transistor regions. Similarly
to magnetic diodes, this equilibrium magnetization influences electrical properties as well, due
to the influence on the equilibrium minority carrier density. Consider a magnetic base, for
example, assuming its spin polarization to be P0b. The equilibrium electron density there is

n0b = n2
i

Nab

1√
1 − P2

0b

, (40)

where ni is the intrinsic density of the underlying semiconductor material and Nab is the
acceptor doping. Since the current across p–n junctions, in our case the emitter–base junction,
is linearly dependent on n0b, the electron emitter current and the emitter efficiency will be
linearly proportional to n0b as well. The spin-charge factor η then stands out as

η = 1√
1 − P2

0b

. (41)

This finally gives for the gain of the transistor

β = β0√
1 − P2

0b

. (42)

It turns out that the gain can also be controlled by the emitter spin polarization [144], but is
unaffected by the possible equilibrium collector spin [148]. The control of the current gain by
the equilibrium spin polarization has been termed magnetoamplification [95].

4.3. Giant magnetoamplification

Giant magnetoamplification is a direct consequence of the spin-charge coupling across a p–
n junction. Consider a magnetic bipolar transistor with a magnetic base having equilibrium
spin polarization P0b. The emitter and the collector are nonmagnetic. Suppose we can excite
nonequilibrium spin in the emitter, giving it a nonequilibrium spin polarization δPe. As a result
of the proximity of the equilibrium and nonequilibrium spin there appears an EMF across the
junction and the modification of the electron injection efficiency. This spin-charge coupling is
reflected in the η:

η = 1 + δPe P0b√
1 − P2

0b

. (43)

The current gain factor becomes

β = β0
1 + δPe P0b√

1 − P2
0b

. (44)
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The spin dependence of the current gain due to the spin-charge coupling has been
termed giant magnetoamplification [148], due to the potentially giant relative difference of
amplification for parallel (δPe P0b > 0) and antiparallel (δPe P0b < 0) configurations. The
corresponding giant magnetoamplification coefficient is

GMA = βp − βap

βap
, (45)

where the subscripts p and ap represent the parallel and antiparallel configurations, respectively.
For the above case of the magnetic base we obtain (recall also section 2.2 and equation (33))

GMA = 2|δPe P0b|
1 − |δPe P0b| . (46)

If the equilibrium and nonequilibrium spin polarizations were about 50%, the corresponding
GMA factor would be about 67%.

4.4. Spin injection

We have seen in the previous section that spin injection from a magnetic n region to a
nonmagnetic p region of a p–n junction is not possible at small biases due to balancing
thermodynamics of the equilibrium spin polarization and the spin-dependent thermal activation.
Only nonequilibrium spin can be injected; that is, the (nonequilibrium) spin has to first
accumulate in the magnetic region.

Although the magnetic bipolar transistor comprises two magnetic p–n junctions in series,
spin injection is possible even at low biases in the forward active regime. The reason for the
possibility of spin injection is that minority electrons injected from the emitter to the magnetic
base accumulate in the base. There is thus nonequilibrium electron density with a gradient
sufficient to drive the electrons by diffusion to the collector. The electron spins equilibrate
in the base to the equilibrium spin polarization. We thus have nonequilibrium spin density
in the base, with the equilibrium spin polarization. It is this nonequilibrium spin density that
drives the spin injection to the collector: as the spin-polarized electrons move towards the base–
collector depletion layer, they are swept by the built-in electric field of the layer to the collector.
In effect, we have a minority electron spin pumping, similar to what happens in spin-polarized
p–n junctions or solar cells [93]. The resulting spin polarization in the collector, in the limit of
a narrow base (the width smaller than the spin diffusion length), is [148]

δPc ≈ P0b
Lsc

wb

eqVbe/kB T

Ndc
, (47)

where Lsc is the spin diffusion length in the collector and Ndc is the collector donor density.
For a spin polarization of P0b ≈ 0.5 one can achieve δPc as large as 0.1, mainly due to the large
ratio of the base width and the spin diffusion length in the collector.

Much less surprising is the spin injection possibility for a source spin from the emitter to
the collector. Suppose we induce a spin polarization δPe in the emitter. In the active forward
regime the spin is injected to the collector through the following sequence of steps: first, the
source spin diffuses towards the base–emitter junction. If the spin diffusion length is larger
than the length the spin travels from the injection point to the base–emitter depletion layer, the
spin will attenuate only a little. Then the spin is transferred to the base through the depletion
region. If we for now take a nonmagnetic base, the spin polarization in the base will be roughly
δPe. The nonequilibrium spin polarizations on the two sides of a p–n junction are the same, as
follows from the generalized Shockley theory of spin-polarized p–n junctions [95]. As a result
of the nonequilibrium spin polarization, there appears nonequilibrium spin density in the base.
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This density will be injected into the collector as a result of the minority electron spin pumping,
similarly to the case of the no source spin case above. We have derived the following formula
for the injected spin polarization in the collector:

δPc ≈ δPe
Lsc

wb

n0beqVbe/kBT

Ndc
. (48)

Comparing with equation (47), we see that the role of the source spin polarization in the emitter
is similar to the role of the equilibrium spin in the base. Both can be efficiently injected through
to the collector.

In summary, magnetic bipolar transistors offer new functionalities to conventional
semiconductor electronics. The most exciting is the possibility of large magnetoamplification
effects. In all other aspects the magnetic bipolar transistors will have a similar performance to
their conventional counterparts, since they are based on the same physical principles governing
electronic transport.

5. Conclusions

We have reviewed here several phenomena associated with bipolar spin-polarized transport in
semiconductors. Our findings for two-terminal structures, such as magnetic heterojunctions,
can also be applied to more complicated multi-terminal geometries. We show that the interplay
of the magnetic region with equilibrium spin polarization and injected nonequilibrium spin
leads to the spin-voltaic effect in a heterojunction. This theoretical prediction, a spin analogue
of the photo-voltaic effect, was also recently confirmed experimentally. The direction of the
charge current, which can flow even at no applied bias, can be switched by reversal of the
equilibrium magnetization or by reversal of the polarization of the injected spin. In three-
terminal magnetic bipolar transistors the spin-voltaic effect implies that one could effectively
control the gain or current amplification in such devices. We predict the possibility for giant
magnetoamplification, which could be viewed as a generalization of the spin-valve effect to
semiconductor structures with strong intrinsic nonlinearities suitable for spin-controlled logic.
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[94] Žutić I, Fabian J and Das Sarma S 2002 Phys. Rev. Lett. 88 066603
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